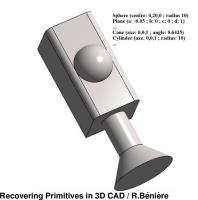
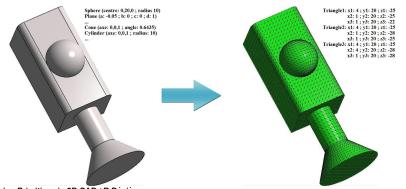
Introduction	Primitives Extraction	Results 0000	Conclusion

Recovering Primitives in 3D CAD meshes

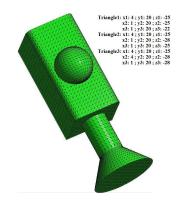
Roseline Bénière^{1,2} G. Subsol¹, G. Gesquière³, F. Le Breton² and W. Puech¹

LIRMM, University of Montpellier 2/CNRS, France (1) C4W, Montpellier, France (2) LSIS, Aix Marseille University, France(3)


January 26st SPIE 2011

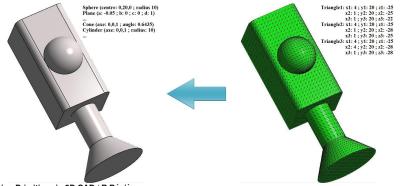

Introduction ●○	Primitives Extraction	Results	Conclusion
Objective			

• A CAD object is usually modeled by a structured combination of primitive surfaces (Plane, Sphere, Cone, Cylinder, Splines ...)


Introduction ●○	Primitives Extraction	Results	Conclusion
Objective			

- A CAD object is usually modeled by a structured combination of primitive surfaces (Plane, Sphere, Cone, Cylinder, Splines ...)
- But a discretization into a 3D mesh is used in many cases

Introduction ●○	Primitives Extraction	Results	Conclusion
Objective			


- A CAD object is usually modeled by a structured combination of primitive surfaces (Plane, Sphere, Cone, Cylinder, Splines ...)
- But a discretization into a 3D mesh is used in many cases
- And the initial continuous model can be lost or not correspond anymore

Introduction ●○	Primitives Extraction	Results 0000	Conclusion

Objective

- A CAD object is usually modeled by a structured combination of primitive surfaces (Plane, Sphere, Cone, Cylinder, Splines ...)
- But a discretization into a 3D mesh is used in many cases
- And the initial continuous model can be lost or not correspond anymore
- Then a primitive extraction algorithm may be required to reconstruct a continuous representation

Introduction ○●	Primitives Extraction	Results	Conclusion
Overview			

Algorithms for reverse engineering boundary representation models Computer-Aided Design 33(11): 839-851 2001

Sunil and Pande
Automatic recognition of features from freeform surface
CAD models
Computer-Aided Design 40(4): 502-517 2008

Introduction ○●	Primitives Extraction	Results 0000	Conclusion
Overview			

Benkõ et al.

Algorithms for reverse engineering boundary representation models Computer-Aided Design 33(11): 839-851 2001

Sunil and Pande

Automatic recognition of features from freeform surface CAD models Computer-Aided Design 40(4): 502-517 2008

Our method:

Definition of a local shape criterion

Introduction ○●	Primitives Extraction	Results	Conclusion
Overview			

Algorithms for reverse engineering boundary representation models Computer-Aided Design 33(11): 839-851 2001

Sunil and Pande Automatic recognition of features from freeform surface CAD models Computer-Aided Design 40(4): 502-517 2008

Our method:

- Definition of a local shape criterion
- Grouping vertices into areas corresponding to one primitive type

Introduction ○●	Primitives Extraction	Results	Conclusion
Overview			

Algorithms for reverse engineering boundary representation models Computer-Aided Design 33(11): 839-851 2001

Sunil and Pande

Automatic recognition of features from freeform surface CAD models Computer-Aided Design 40(4): 502-517 2008

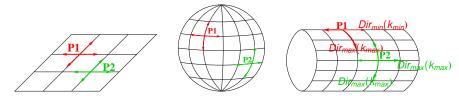
Our method:

- Definition of a local shape criterion
- Grouping vertices into areas corresponding to one primitive type
- Omputation of the primitive parameters

Introduction	Primitives Extraction ●○○○○	Results	Conclusion
Local shap	e definition		

The shape definition uses

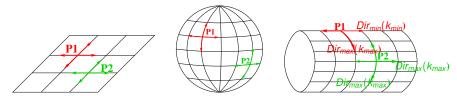
Introduction	Primitives Extraction ●○○○○	Results	Conclusion 00
Local shape	definition		


The shape definition uses Curvature

 \Rightarrow points contained in Plane, Sphere, Cone or Cylinder have specific features:

Introduction	Primitives Extraction ●○○○○	Results	Conclusion
Local shap	e definition		

The shape definition uses Curvature

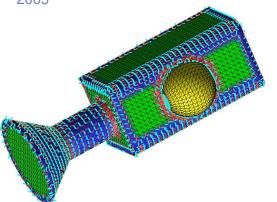

 \Rightarrow points contained in Plane, Sphere, Cone or Cylinder have specific features:

Introduction	Primitives Extraction ●○○○○	Results	Conclusion
Local shap	e definition		

The shape definition uses Curvature

 \Rightarrow points contained in Plane, Sphere, Cone or Cylinder have specific features:

	k _{min}	k _{max}	Dir _{min}	Dir _{max}
Plane	= 0	= 0	not defined	not defined
Sphere	$= \frac{1}{Radius}$	$= \frac{1}{Radius}$	not defined	not defined
Cone/Cylinder	= 0	$= \frac{1}{Radius}$	= generating line	not used
Corre/Cymruer	$=\frac{1}{Radius}$	= 0	not used	= generating line

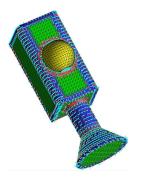

Introduction	Primitives Extraction ○●○○○	Results	Conclusion
Curvature	computation		

- \Rightarrow We choose a method based on Euler formula
- Dong and Wang Curvatures estimation on triangular mesh Journal of Zhejiang University-Science A 6(1): 128-136 2005

Introduction	Primitives Extraction ○●○○○	Results	Conclusion

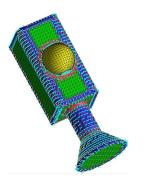
Curvature computation

- \Rightarrow We choose a method based on Euler formula
- Dong and Wang Curvatures estimation on triangular mesh Journal of Zhejiang University-Science A 6(1): 128-136 2005

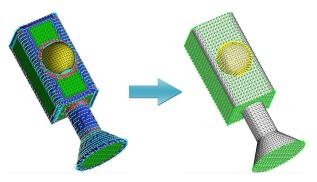


Concave point Convex point Plane point Sphere point Dirmax Dirmin

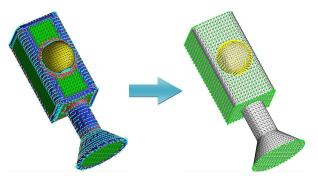
Neighborhood ring= 1


Introduction	Primitives Extraction	Results	Conclusion 00
Plane/Sphere	Extraction		

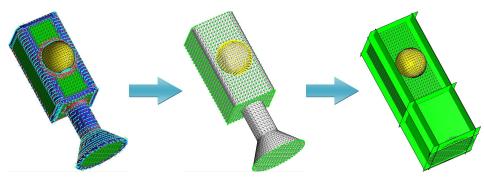
• Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**


Introduction	Primitives Extraction ○○●○○	Results	Conclusion
Plane/Sphere I	Extraction		

- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group all adjacent points with $k_{max} = k_{min} \approx k$ (if plane then k = 0)

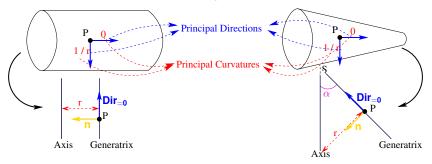

Introduction	Primitives Extraction ○○●○○	Results	Conclusion
Plane/Sphere I	Extraction		

- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group all adjacent points with $k_{max} = k_{min} \approx k$ (if plane then k = 0)


Introduction	Primitives Extraction	Results	Conclusion
Plane/Sphere	Extraction		

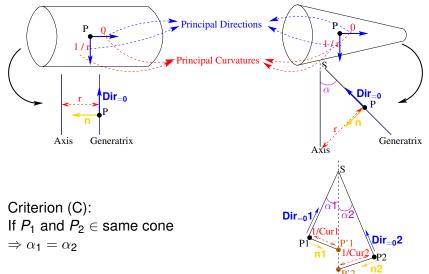
- Compute k_{min}, k_{max}, **Dir_{min}** and **Dir_{max}**
- Group all adjacent points with $k_{max} = k_{min} \approx k$ (if plane then k = 0)
- Approximation by a least square regression with the implicit equations

Introduction	Primitives Extraction ○○●○○	Results	Conclusion
Plane/Sphe	re Extraction		

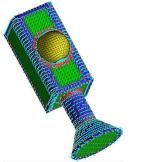

- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group all adjacent points with $k_{max} = k_{min} \approx k$ (if plane then k = 0)
- Approximation by a least square regression with the implicit equations

Introduction	Primitives Extraction	Results	Conclusion
	00000		

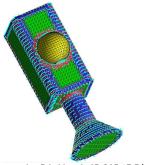
Cone/Cylinder Extraction


General features of cones and cylinders:

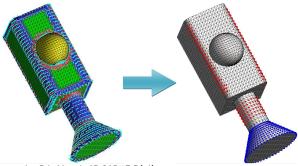
Introduction	Primitives Extraction	Results	Conclusion
	00000		
	· · · · ·		


Cone/Cylinder Extraction

General features of cones and cylinders:

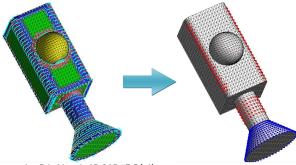

Introduction	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cyline	der Extraction		

• Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**


Introduction	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinder	Extraction		

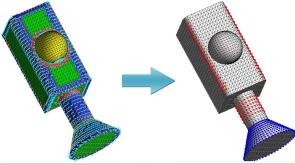
- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)

Introduction	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinder	r Extraction		


- Compute k_{min} , k_{max} , **Dir**_{min} and **Dir**_{max}
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)

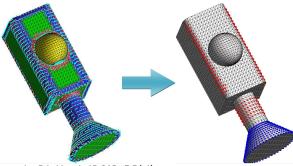
Recovering Primitives in 3D CAD / R.Bénière

Introduction 00	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinder	r Extraction		


- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)
- By regression on all *pointAxis* (P') \Rightarrow rotation axis

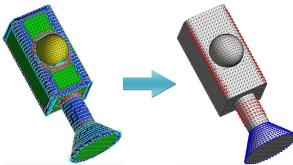
Recovering Primitives in 3D CAD / R.Bénière

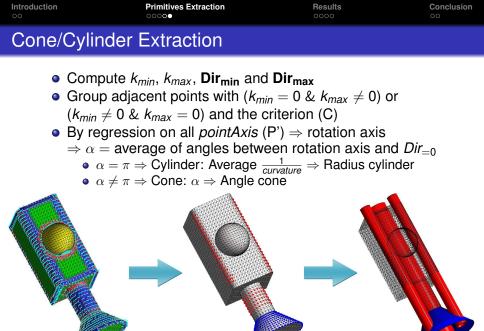
Introduction	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinder	Extraction		


- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)
- By regression on all *pointAxis* (P') ⇒ rotation axis
 - $\Rightarrow \alpha =$ average of angles between rotation axis and $\textit{Dir}_{=0}$

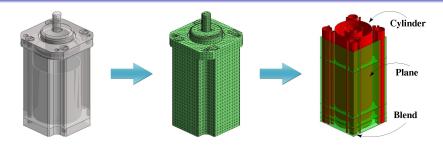
Recovering Primitives in 3D CAD / R.Bénière

Introduction 00	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinde	r Extraction		


- Compute *k_{min}*, *k_{max}*, **Dir_{min}** and **Dir_{max}**
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)
- By regression on all *pointAxis* (P') ⇒ rotation axis
 - $\Rightarrow \alpha =$ average of angles between rotation axis and $\textit{Dir}_{=0}$
 - $\alpha = \pi \Rightarrow$ Cylinder: Average $\frac{1}{curvature} \Rightarrow$ Radius cylinder

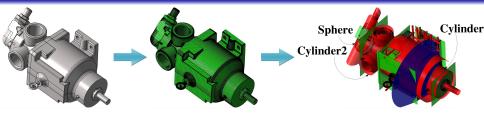

Recovering Primitives in 3D CAD / R.Bénière

Introduction	Primitives Extraction ○○○○●	Results	Conclusion
Cone/Cylinder	Extraction		


- Compute k_{min}, k_{max}, Dir_{min} and Dir_{max}
- Group adjacent points with (k_{min} = 0 & k_{max} ≠ 0) or (k_{min} ≠ 0 & k_{max} = 0) and the criterion (C)
- By regression on all *pointAxis* (P') ⇒ rotation axis
 - $\Rightarrow \alpha =$ average of angles between rotation axis and $\textit{Dir}_{=0}$
 - $\alpha = \pi \Rightarrow$ Cylinder: Average $\frac{1}{curvature} \Rightarrow$ Radius cylinder
 - $\alpha \neq \pi \Rightarrow$ Cone: $\alpha \Rightarrow$ Angle cone

Recovering Primitives in 3D CAD / R.Bénière

Introduction	Primitives Extraction	Results ●০০০	Conclusion
CAD resul	ts: Motor		

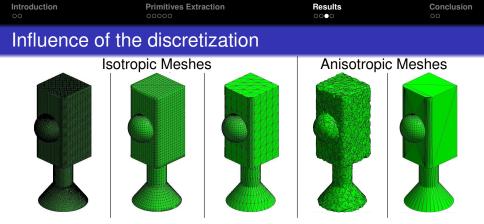


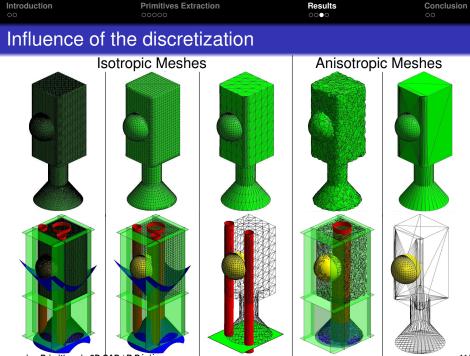
22,482 triangles \Rightarrow extraction of 26 planes + 25 cylinders

<i>,</i> 0			
		Original Values	MotorMesh
Cylinder	Axis (x;y;z)	0;0;1	0;0;0.999
Cylinder	Radius	33.5	33.499
Blend	Axis (x;y;z)	0;0;1	0;0;0.999
Dierio	Radius	7	7.079
Plane	Coefficients (a;b;c;d)	0;0.024;0;1	0;0.024;0;1
http://shapes.aimatshape.net/viewgroup.php?id=1242			

Introduction	Primitives Extraction	Results ○●○○	Conclusion
	to: Dump		

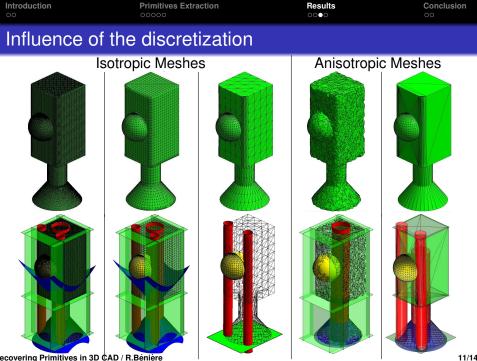
CAD results: Pump

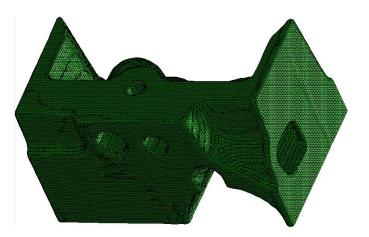



158,746 triangles \Rightarrow extraction of

9 planes + 1 sphere + 1 cone + 13 cylinders + 31 blends

	Original Values	PumpMesh
Axis (x;y;z)	1;0;0	0.999;-0.011;-0.004
Radius	49.669	49.669
Axis (x;y;z)	0;1;0	-0.006;1;0.002
Radius	34.162	34.175
Center (x;y;z)	409.175;367.654;515.722	409.167;367.682;515.780
Radius	23.114	23.088
	Radius Axis (x;y;z) Radius Center (x;y;z)	Axis (x;y;z) 1;0;0 Radius 49.669 Axis (x;y;z) 0;1;0 Radius 34.162 Center (x;y;z) 409.175;367.654;515.722


http://www.vikingpump.com/en/engineering/3dmodels.html

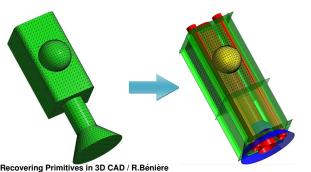


Recovering Primitives in 3D CAD / R.Bénière

11/14

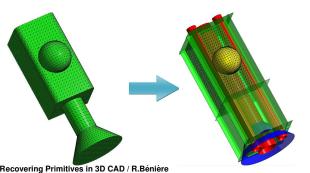


Introduction	Primitives Extraction	Results ○○○●	Conclusion
Scanned Mes	h		

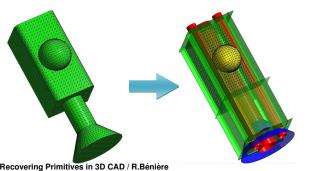

Introduction	Primitives Extraction	Results	Conclusion ●○
Conclusion			

Our method takes a mesh

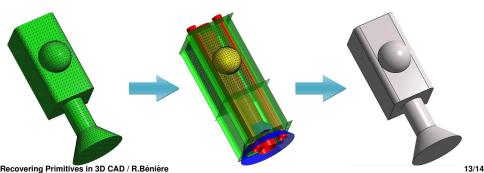
Introduction	Primitives Extraction	Results	Conclusion ●○
Conclusion			


Our method takes a mesh \Rightarrow extract geometrical primitives

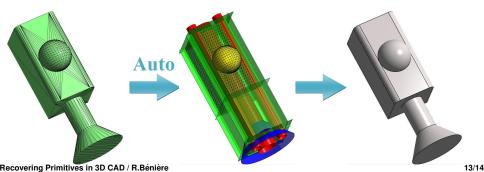
Introduction	Primitives Extraction	Results	Conclusion ●○
O			


Our method takes a mesh \implies extract geometrical primitives Future Work:

 Improve the cylinder/cone parameter computation (approximation)


Introduction 00	Primitives Extraction	Results	Conclusion ●○
O I			

- Improve the cylinder/cone parameter computation (approximation)
- Extract new primitive types (revolution surfaces ...)


Introduction 00	Primitives Extraction	Results	Conclusion ●○
O I			

- Improve the cylinder/cone parameter computation (approximation)
- Extract new primitive types (revolution surfaces ...)
- Trim the primitives and reconstruct the object (topology)

Introduction	Primitives Extraction	Results	Conclusion ●○

- Improve the cylinder/cone parameter computation (approximation)
- Extract new primitive types (revolution surfaces ...)
- Trim the primitives and reconstruct the object (topology)
- Add an automatic segmentation step (sparse meshes)

Introduction	Primitives Extraction	Results	Conclusion ●○

- Improve the cylinder/cone parameter computation (approximation)
- Extract new primitive types (revolution surfaces ...)
- Trim the primitives and reconstruct the object (topology)
- Add an automatic segmentation step (sparse meshes)
- Deal with noisy meshes

Results

Thank you for your attention

QUESTIONS?

Site: www.lirmm.fr/~beniere Mail: roseline.beniere@lirmm.fr C4W site: www.c4w.com

Roseline Bénière, G. Subsol, G. Gesquière, F. Le Breton and W. Puech, Recovering Primitives in 3D CAD meshes, SPIE, San Francisco, 2011

